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Abstract

The research investigates a new method of control for
telemanipulators called bilateral impedance control. This new
method differs from previous apnroaches in that interaction forces
are used as the communication signals between the master and slave
robots. The main advantage of bilateral impedance control is that it
permits the arbitrary specificaticn of desired system performance
characteristics. Performance can be described by a set of three
independent parameters that relate the robot forces and positions.
“his set of parameters may include the force ratio, the position ratio,
nd the robot impedances. The system stability is analyzed with the
Nyquist Criterion to obtain two conditions that are sufficient to
guarantee closed-loop stability. This control architecture is
implemented on a telemanipulator having seven degrees of freedom.
The theoretical predictions for performance and stability are
experimentally verified.

Introduction

A telerobotic system consists of a master robot that is
manipulated by a human operator, and a slave robot that performs
tasks at a remote location. The two robots are electronically coupled
so that the slave robot moves in response to commands from the
master robot. Figure 1 shows the elements of a telerobotic system.
The slave robot is shown interacting with an environment. In this
paper "environment” refers to the object that the slave robot moves
or manipulate through space.

master, o Slave

Figure 1: Elements of a Telerobotic System

Teleoperation is greatly ¢ ihanced if the forces acting on the
slave robot are fed back to the op:zrator. This gives the operator the
feeling that she is manipulating the remote environment directly.
Systems that provide force reflaction from the environment are
called bilateral because inforn ation travels in both directions
between the master and slave.

In cugcntly used telerobotic control methods, the slave robot
is driven by position or velocity s.gnals from the master robot [1-4].
Force reflection is implemented in several ways. The master robot
may be back driven by position signals from the slave robot. The
position error generated when the slave contacts the environment
allows the operator to feel the interaction [2]. Alternately, the
interaction force may be sensed directly by a force sensor on the
slave, and the resulting force signal is used to back drive the master
[2]. A comparison of common control methods is givenin [5'.

This paper proposes a new method of telerobotic control that
is based solely on the exchange of force signals. The prcvosed
control architecture has several advantages over pre sious
approaches. It permits the arbitrary specification of desired system
performance characteristics. The relationship between force and
position can be modulated at beth ends of the system to suit the
requirements of the task. The master and slave robots can be
stabilized independently without becoming involved in the overall
system dynamics. Finally, the new control method allows the
human to overcome the master rcbot's resistance to motion if it has
high friction, inertia, or gear reduction.

Dynamic Models

The dynamic behavior of a telerobotic system results from
the interaction of its components: the master and slave robots, the
human, and the environment. Linear dynamic models will be
developed separately for each of these components. The models
will then be assembled to form a telerobotic control architectu-s that
describes overall system behavior. A single-degree-of-freedom
telerobotic system is discussed in this paper; the multivariable
control technique is described in 12.

It is assumed that both robots are stabilized by independent,
closed-loop position controllers t1at keep them stationary when the
human is not interacting with the system. The stabilizing controllers
may include velocity feedback, tut closed-loop velocity control by
itself cannot guarantee that the s!ave will always track the master
motion.
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The master robot position, ym, is a function of two inputs:
the mechanical power transferred from the human arm, and the
electronic commands sent to the robot control system. The transfer
function Gm represents the master robot's closed-loop control
system, which incorporates the dynamics of the robot and its
stabilizing compensator. The input to the master control system is
the electronic command, uy. The output is the master position, ym.
The transfer function Sy, is the master sensitivity. It relates the force
imposed on the master robot, fm, to the master position, ym. The
sensitivity depends on the robot’s mechanical characteristics, and on
the gain of the stabilizing position controller. Equation (1)
represents the master robot dynamic behavior in general form.

8))

Since the master robot is in contact with the human, fy, is the force
exerted by the human arm. Similarly, the dynamic behavior of the
slave robot can be defined by

¥Ym =Gmum + Sm fm

ys = Gs ug + Sg fg @
where f; is the force imposed on the slave robot by the environment,
and ug is the electronic input command to the slave control system.
The transfer functions G and S represent the slave robot's closed-
loop control system and the slave sensitivity, respectively.

The human arm can be modeled as a non-ideal force control
system [6]. The force exerted on the master robot by the human arm
results from two inputs. The first input, up, is issued by the human
central nervous system. The specific form of uy, is not known, other
than it is the human thought deciding to impose a force on the robot.
This unstructured representation implicitly accounts for the internal
dynamics of muscle contraction, nerve conduction, and central
nervous system processing. The second input is the motion of the
master robot. The human arm ensitivity function, Sp, maps the
master robot position, yp, into the imposed force, fp,. The dynamic
equation of the human arm is
fm =uh - Sh ¥m (@)

The minus sign indicates that the reaction force exerted on the robot
by the human arm is opposite in direction to the robot motion.

The environmental dynamics can be represented by a transfer
function E that relates the slave position, yg, to the force imposed on
the slave robot, fs. For example, if the slave robot is pushing
against a spring and damper, the environmental dynamics are E(s) =
(K + Cs) where K, C, and s are tt-e stiffness, damping, and Laplace
operator. If the slave robot is maruevering an object of mass M, the
environmental dynamics are E(s) = Ms2. A general expression for
the total force imposed on the slave robot is
fs=fext-Eys 4)
where fex; is the resultant of all e.cternal forces on the environment.
The environment is usually considered to be a passive element with
no independent sources of energy. Thus, in most cases, it is
assumed that fex; = 0. The minus sign in Equation (4) indicates that
the reaction force exerted on the robot by the environment is
opposite in direction to the robot cisplacement.

Bilateral Impedance Control

The overall dynamic behavior of the telerobotic system can
be represented by a block diagram in Figure 2. This block diagram
is constructed by combining the dynamic equations for the master
and slave robots, the human, and the environment (Equations 1-4).
The marrix, H, is added to the svstem for control and operates on
the interaction forces, fy;, and fg ouly.
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Figure 2: Bilateral Impedance Control Architecture

To see how the control method works, suppose that both the
master and slave robots are initially at rest with no forces imposed
on the system. Then there are no input commands to the robot
control systems, and the stabilizing position controllers keep both
robots stationary. Now, if the human decides to move her hand, uy
becomes nonzero, and the master robot starts to move. This motion
is a result of the mechanical power transferred from the human to the
master. Even though the force applied by the human may be very
large, the master robot motion will be small if the sensitivity Sy, is
small. In other words, the human may not be strong enough to
overcome the master robot's resistance to motion (impedance).

To increase the human's effective strength, the apparent
sensitivity of the master robot is increased by measuring the
interaction force, fry, and using it as an input to the master control
system. The interaction force is rnodified by the compensator Hyy,
which produces as its output the master input command, um. At this
point, there are no restrictions placed on either the structure or size
of the compensator. Note that GnH) ) acts in parallel to Sy, and
thus has the effect of changing the apparent sensitivity of the master
robot. The master's apparent sensitivity can be increased by
choosing a large gain for Hyj. This is equivalent to reducing the
master impedance.

The impedance of the slave robot is controlled in a similar
manner to that of the master robot. The force imposed on the slave
robot by the environment, f¢, i; measured and used as an input
command to the slave control system. The environmental interaction
force is modified by the compensator Hypp, which produces as its
output the slave input command, ug. This compensator generates
compliance in the slave robot. Compliance is necessary for system
stability, and it prevents the build up of large contact forces when
the slave encounters a rigid surface [5].

The measured interaction forces fy, and f; are also used as
the communication signals between the master and the slave. The
bilateral communication is regulated by the two compensators Hyp
and Hy;. The master interaction force fyy, is used to drive the slave
robot after passing through the compensator Hp;. This compensator
transmits information in the forward direction from the master to the
slave, and thus couples the motions of the two robots. The slave
interaction force f; is used to drive the master robot after passing
through the compensator Hy5. This compensator transmits
information in the reverse direction from the slave to the master, and
thus provides force reflection.

The compensators Hyy, Hyo, Hp}, and Hpy make up the
elements of the matrix H. By proper selection of these four
elements, the system designers 2an achieve desired performance



characteristics. However, the designers do not have complete
freedom in choosing the value of H. The closed-loop system of
Figure 2 must remain stable for any chosen value of H.

The proposed control architecture is called bilateral
impedance control because it establishes a relationship between force
and position at both ends of the telerobotic system. The central
difference between this new control method and previous
architectures is that interaction forces are used as the communication
signals between the master and slave. The flow of force signals
within the system is regulated by the H matrix. This matrix permits
the arbitrary specification of system performance.

Performance Parameters

The ideal performance of a telerobotic system can be
expressed in many ways. One way is to strive for a completely
transparent interface between the human operator and the
environment. If such a system could be attained, the operator would
experience the same sensations as if she were actually present at the
remote location. This may not always be desirable, however. For
example, suppose that the telerobotic system is used to maneuver a
large, massive object through an arbitrary trajectory. Inertial,
centrifugal, coriolis, and gravitational forces will be imposed on the
slave. It seems reasonable to mask the dynamic behavior of the load
through the design of appropriate controllers so that the human feels
scaled-down values of these forces. In another example, suppose
that the slave is holding a vibrating jack hammer. The objective is to
filter the forces transferred to the master so that the human feels only
the low frequency components [7]. These examples illustrate that in
the most general case, it should be possible to specify any desired
relationship between the master and slave forces.

In addition, it should be possible to specify a desired
relationship between the master and slave positions. For example,
the slave robot could perform small, precise motions in response to
large, coarse motions of the master robot. This position scaling
would have applications in microsurgery (7]. Thus, in general, it is
necessary to shape the relationships between the forces and the
positions at both ends of the system such that

fS = Rf fm (5)
ys=Ry ym (6)

where the transfer functions Rp and Ry represent the desired
relationships.

The performance of the telerobotic system can be
characterized by four state variables. These are the forces fm and fg,
and the positions ym and ys. In Figure 3, the lines connecting the
circled state variables represent possible relationships between them.
Only three independent relationships are needed to relate the state
variables. Two of these relationships are given by equations 5 and
6. A third relationship must be specified that relates either f and

¥m, or fs and ys.' Choosing th> relationship between the slave
variables, the necessary third equation is

fs=Zs ys M
where Zy is the slave impedance.

Iwhile it is theoretically possible to spc cify a relationship between ym and fg,
or between fr, and ys, these relationshif.< have no physical significance.
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Figure 3: State Variable Relationships for a Telerobotic System

The three parameters Ry, Ry, and Zg completely describe the
system performance. These parameters are independent, and thus
can be arbitrarily specified to achieve desired performance
characteristics. Other sets of three parameters can also be used to
describe system performance, as long as the parameters are
independent. For example, Zm, Zs, and Ry constitute such a set.

The performance parameters are fundamentally related to the
clements in the H matrix. To make this relationship apparent, the
performance parameters are expressed in terms of the system
variables G, Gs, Sm, Ss, Sh, and E. The following equations can
be obtained from the block diagram of Figure 2:

__PyE
Rf_.l + Py2E ®
Ry=——£ll—— 'C))
Pi1 + AP E
- 1+ PypE (10)
P11 + AP E
=-1;P1-1§h—- when up =0 (11)
P22 + AP Sy
where:
P11 =GmHi1+ Sm (12)
P12=GmH12 (13)
P21 =GsHyy (14)
P22 =GsHaz + Ss (15)
AP =P11 P22- P12 P21 (16)

It can be seen from equations (8) through (16) that the
performance parameters depend on the relative magnitudes of the
elements in H. If values are known for the system variables, the H
matrix can be designed to achieve desired values for the performance
parameters. The process of H matrix design will be illustrated by an
example during experimental verification.




Stability

The arbitrary specification of desired performance
characteristics may conflict with the requirements for system
stability. In other words, there may be a trade-off between
performance and stability. The Nyquist Criterion will be used to
derive the conditions that are sufficient to guarantee closed-loop
stability of linear systems with transfer function matrix operators. It
will be shown that the stability conditions place limitations on
possible structures for the H matrix.

The telerobotic control architecture must be reduced to an
equivalent loop transfer function before the Nyquist Criterion can be
applied [8]. Using matrix operators, the block diagram in Figure 2
can be rearranged to obtain the simplified block diagram shown in
Figure 4. A single control loop has been formed by merging the
separate control loops of the master and slave robots. Further
simplification is possible by combining the G, H, and S matrices
using the rules of block diagram algebra. Let the matrix P be
defined such that
P=GH+S an
Note that the elements of P are given by equations (12) through
(15). From the simplified block diagram, the equivalent loop
transfer function of the telerobotic system is RP.

The Nyquist Criterion states that for closed-loop stability of
a linear system, the equivalent loop transfer function must satisfy the
following condition {8}):

det[I+ RP]#0 forall w e [0, o] (18)
u It
EREA | ]
. Hpy Hpz
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Figure 4: Simplified Block Diagram in Matrix Form

Substituting the elements of R and P into equation (18) for
calculation of the determinant yields
ShE AP +Sp P +PnE+1#0 forallwe [0, ] (9

For the system to be stable, the left hand side of equation (19) must
not equal zero. If it is assumed that

SpP11+1#0 forallwe [0, «) (20)
equation (19) can be written as
EShAP*+ P2l forallwe [0, @1

Sp P +1

A sufficient condition to insure the: validity of equation (21) is
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|E[Sh AP + Pp3]

Sp Py +1 @2)
which implies that
1+S8yP
P22 + Sp AP

This is the stability condition for constrained motion, which occurs
when the slave robot is interacting with the environment.
Comparing the left hand side of inequality (23) to equation (11), it
can be seen that the stability condition is really a limitation on
possible values of the slave impedance. That is, for stability

Zs > IE! (24)
ve | reater than the impedance of the
environment. Since Zg is a performance parameter that can be

arbitrarily specified, it is usually possible to stabilize the system by
selecting a sufficiently large value for the slave impedance. There is
no conflict between performance and stability in this case.
However, if the slave robot is in contact with a rigid surface, the
slave impedance must be very large to stabilize the system. As

E—e0, it is impossible to specify Zg large enough such that stability
of the system is guaranteed. Thus, there must be some initial
compliancy in the environment for the system to be stable.

In deriving equation (21), it was assumed that inequality
(20) must be true. A sufficient condition to insure the validity of
equation (20) is

ISy Prii<1 25)

which implies that

Pyl < |il 26)
11 Sh

This is the stability condition for unconstrained motion. When the
slave robot is moving freely through space, (i.e., E = 0), equation
(10) for the master impedance becomes

1
=P 27
Comparing equation (27) with inequality (26), it can be seen that the
stability condition is really a limitation on possible values of the
master impedance. That is, for stability

Zm! > 1Sl when E=0 (28)
The master impedance must be greater than the impedance of the
human_arm, Since Zy, is a performance parameter that can be

arbitrarily specified, there is no conflict between performance and
stability in most cases. However, if the human grips the master
robot tightly, the master impedarce must be very large to stabilize
the system. As Sp—eo, it is impcssible to specify Zg large enough
such that stability of the system is guaranteed. Thus, there must be

some initial compliancy in the human arm for the systemm to be
stable.

Experimental Verification

The theoretical predictions for performance and stability
were experimentally verified on the seven-degree-of freedom NASA
Laboratory Telerobotic Manipulator (Figure 5). A detailed
description on this telerobotic system can be found in references




{10} and [11]. Due to the large inertia of the robots, the system is
mancuvered at low speeds and the static values of the system
variables are sufficient to charaterize the telerobotic system. It was
found that Gm = 0.0117 rad/Ibf, Sy, = 0.0033 rad/lbf, G; =0.0117
rad/1bf, and Sg = 0.0033 rad/Ibf for small elbow pitch motions. A
six-component force-torque sensor was mounted to the end point of
each robot for measuring the interaction forces. The control
algorithm described above was implemented at a loop rate of 200
Hz.
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Figure 5: NASA Laboratory Telerobotic Manipulator
(slave robot shown)

In the first experiment, the objective was to arbirarily
specify the master impedance for elbow pitch in unconstrained
motion. The master impedance was chosen to be Zm = 100 Ibffrad.
The constant value for the maste - impedance leads to a spring-like
behavior for the master arm: the robot's position is directly
proportional to the applied force. This causes the robot to return to
its initial position after force is removed. However, the human must
always work against the restoring force of the spring. Using
equations 27 and 12, Hyj was calculated to be 0.57. An increasing
vertical force was exerted on the end of the master robot. The end-
point force and the elbow pitch position of the robot were recorded
during the maneuver. Figure 6 shows a plot of master force versus
master position. The slope of this curve is Zpy,; it was calculated
with a least-squares curve fit. The measured impedance was Zq, =
101.2 Ibffrad which agrees with the theoretical prediction.
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Figure 6: Master robot force vs master robot position; the slope of
101 2 Ibfirad represents the master robot impedance.

In the second experiment, the objective was to shape the
master impedance as a damper; such that Zy,, = 1 s Ibf/rad where s is
the Laplace operator. This behavior makes the master robot move
with a velocity proportional to the imposed force. The robot force
and position were recorded during a elbow pitch maneuver. Figure
7 is a plot of the master force versus master position. There is an
initial transient behavior wherc the force builds up enough to
overcome the robot's inertia. Then the curve is fairly flat, indicating
that a constant damping force is acting on the robot. After force is
removed, the robot will remain in its last position. Since there are
no restoring forces acting on the human arm, a damping impedance
is the most natural mode of motion for teleoperation.
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Figure 7: Master robot force vs master robot position; the flat part
indicats that the master velocity is proportional to the master force.
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The third experiment demonstrates the system behavior
when two performance parameters (force ratio and position ratio as
given by equations 5 and 6) are specified simultaneously: Rf = 2,
and Ry = 1. The first performance specification states that the force
exerted by the slave robot should be twice the force applied to the
master robot. The second performance specification implies that the
positions of both robots must be identical. A spring scale was
employed as a compliant environment with linear stiffness such that
E =217.0 Ibf/rad. To satisfy the requirements of system stability,
one must guarantee that Zg > E (inequality 24). Therefore Z was
chosen to be 223 1bffrad. Note that, once Z, Rf and Ry are chosen,
we have no freedom in choosing Zm,. Pj; was chosen arbitrarily as
0.015 and then equations (8), (9), and (11) were solved for the three
remaining unknown elements Py, P21, and P)s. Using equations
12, through 15, the H matrix can be found such that:

H:[ Hii=1

Hy2=0.25 ]
H;)=1.55

H77=0.10 29

The master robot was moved through a series of elbow pitch
motions by the human operator. The end-point forces and joint
positions of both robots were recorded during the maneuver. The
robot forces are plotted versus time in Figure 8. The slave force
varies in phase with the master force as the spring scale is alternately
compressed and released. The amplitude of the slave force is double
the amplitude of the master force. The force ratio can be determined
from Figure 9, which is a plot of slave force versus master force. A
least-squares curve fit yields a slope of Rg = 2.02. The robot
positions are plotted versus time in Figure 10. The slave robot
tracks the master robot closely. The measured position ratio is Ry =
0.98. The actual values of the force ratio and the position ratio agree
well with their specified values.

The purpose of placing the performance criterion on the
slave impedance was to guarantee stability of the telerobotic system
during the experiment. However, it was not possible to measure the
magnitude of Zg because the slave robot was constrained by the
environment. The only conclusion that can be inferred is that the
slave impedance was greater than the impedance of the environment.
Otherwise, the system would have been unstable. It will be shown
that this must be true in the next s=ries of experiments.
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Figure 8: The slave robot force is more than the master robot force
by factor of two

3S

Curvefit
fg=2.015f, + 0531

A1

30

2S5

20 4

15 4

fs (Ibf)

o} 5 10 15 20

fn (Ibf)

Figure 9: Slave robot force vs the master robot force; Rf = 2
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Figure 10: The slave robot tracks the master robot closely.

In the fourth experiment, the objective was to verify the
sufficiency of the stability condition for constrained motion.
Inequality (24) is a sufficient but not a necessary condition for
stability of the slave robot. In other words, the robot may be stable
if |Zgl < IE!, but it can never be unstable if IZgl > IEI

Z; was chosen to be equal to E satisfying the stability
condition 24, The slave robot compressed a spring scale that
simulated a compliant environment. The reaction force on the slave
robot was recorded during the maneuver. Figure 11 shows that the
system is stable when interacting with the spring.  Next the slave
impedance was set to 0.5E. The slave force oscillates violently,
indicating that the slave robot is unstable. The results are shown in
Figure 12. It verified that inequality 24 is violated when unstable
contact, as indicated by the unbounded contact force, occurs. It can
be concluded from the previous two experiments that the transition



from stable to unstable behavior occurs somewhere in the region
VSE<Zg<E.
The stability condition for unconstrained motion (inequality
26) can be verified in a similar manner. A lower bound for stability
is established on the master robot impedance, Zg,. It can be shown
that this lower bound is no greater than the human arm impedance,
Sh.
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Figure 11: Siable slave robot force. Z; satisfies inequality 24.
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Figure 12: Unstable master robot force. Zs violates inequaliy 24.

Conclusions

The bilateral impedance control architecture differs from
previous approaches in that force signals travel in both directions
between the master and slave rotots. The communication of force
signals within the system is regulated by the H matrix. By tailoring
the structure of the H matrix, it is possible to arbitrarily specify
desired system performance characteristics. This is the primary
dvantage of bilateral impedance control.

109

System performance can be completely described by a set of
three independent parameters. These parameters may be the force
ratio, the position ratio, or the impedance of either robot. To form
an independent set, one of the parameters must be the slave
impedance. The performance parameters are functions of the system
variables that govern the dynamic behavior of the robots, the human
arm, and the environment. In addition, the performance parameters
are fundamentally related to the elements in the H matrix. By
selecting the relative magnitudes of these four elements, three
performance parameters can be specified simultaneously.

The only limitations on the choice of performance parameters
are imposed by the requirements for system stability. There are two
conditions that are sufficient to guarantee stability. For
unconstrained motion, the master impedance must be greater than
the impedance of the human arm. For constrained motion, the slave
impedance must be greater than the impedance of the environment.
Since both the master and slave impedances are performance
parameters that can be arbitrarily specified, it is not necessary to
trade off performance and stability in most cases.
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